SISTEM PEREDARAN DARAH

Peredaran darah pada manusia dilakukan oleh sel darah dan melalui pembuluh darah. Oleh karena itu disebut peredaran darah tertutup. Peredaran darah berlangsung secara sistemik (disebut juga peredaran darah besar) dan pulmonal (peredaran darah kecil).
A. ALAT-ALAT PEREDARAN DARAH MANUSIA


Alat-alat peredaran darah pada manusia terdiri atas darah, pembuluh darah dan jantung. Ketiganya memiliki fungsi yang berbeda-beda. Sistem transportasi pada manusia ada dua yaitu peredaran darah dan peredaran limfe (getah bening).


1. Darah


Fungsi darah :


· Sebagai alat pengangkut sari makanan dan O2 ke seluruh tubuh dan sisa-sisa metabolisme ke alat ekskresi.


· Menjaga agar temperatur tubuh tetap.


· Mengedarkan air, selain mengedarkan sari makanan juga air yang berfungsi untuk reaksi enzimatis atau untuk menjaga tekanan osmosis tubuh.


· Mengedarkan getah bening.


· Menghindarkan tubuh dari infeksi (membentuk antibody berupa sel darah putih dan sel darah pembeku).


· Menjaga kestabilan suhu tubuh.


· Mengatur keseimbangan asam basa (Hb).


Darah manusia tersusun atas beberapa komponen. Adapun komponen darah adalah :


a. Sel darah yang terdiri atas : sel darah merah (erytrosit), sel darah putih (leukosit) dan keeping-keping darah pembeku (trombosit).


b. Plasma darah (cairan) yang terdiri atas :


· Air, hamper 90% berupa cairan


· Protein : albumin (53%) berperan dalam menjaga tekanan osmosis darah, globulin (43%) berperan dalam pembuatan antibody, fibrinogen (4%) berperan dalam pembekuan darah.


· Gas berupa O2, CO2 dan N2.


· Nutrien : lemak, glukosa, asam amino, vitamin, dll.


· Garam mineral : NaCl, KCl, fosfat, sulfat, bikarbonat, dll.


· Zat sisa : urea, kretinin, asam urat, bilirubin.


· Hormon dan enzim.


c. Dalam plasma terdapat antigen (protein asing) yang berguna untuk membentuk antibody; presipitin yang menggumpalkan antigen; lisin yang mampu menguraikan antigen; antitoksin untuk menawarkan racun.


Macam-macam sel darah :


a. Sel darah merah (erytrosit)


Bentuk sel darah merah bulat gepeng, kedua permukaannya cekung (bikonkaf), dan tidak berinti, pada pria jumlahnya kira-kira 5 juta/mm3 sedangkan wanita kira-kira 4 juta/mm3. Mengandung hemoglobin (zat warna merah pada darah) yang berfungsi mengikat O2, mengandung zat besi (Fe), berwarna merah. Sel darah merah dibentuk dalam sumsum merah tulang, pada tulang pipih. Sel darah merah dapat hidup 120 hari, yang sudah tua/rusak akan dirombak dalam limfa (kura). Hemoglobin yang terlepas akan dibawa ke hati untuk dirombak menjadi zat warna empedu (bilirubin). Adapun zat besi yang terlepas akan digunakan dalam membentuk sel darah merah baru.


Jika sel-sel darah kekurangan zat besi maka akan mengalami penyakit yang disebut anemia. Adapun jika kekurangan darah O2 dinamakan sianosis.


b. Sel darah putih (leukosit)


Macam-macam sel darah putih :


· Monosit, dengan ciri-ciri inti bulat, besar, bersifat fagosit dan dapat bergerak cepat.


· Limfosit, dengan ciri-ciri berinti satu, tidak dapat bergerak, berfungsi untuk imunitas.


Bentuk leukosit tidak tetap (ameboid), tidak berwarna, memiliki inti, bulat/cekung, jumlahnya pada orang normal kira-kira 6.000-9.000/mm3 . Umur sel darah putih sekitar 12-13 hari. Dibuat dalam sumsum tulang merah, limfe dan jaringan retikuloendothelium. Fungsi sel darah putih untuk melindungi tubuh terhadap infeksi. Jika ada kuman sel darah putih akan memakan kuman tersebut, apabila kalah akan berubah menjadi nanah. Selain itu leukosit juga sebagai prengangkutan zat lemak, pembuluh chyl dan limfe serta bersifat fagosit.


c. Sel darah pembeku (trombosit)


Bentuk keping darah pembeku tidak tetap. Fungsinya untuk pembekuan darah, jumlahnya kira-kira 200.000-400.000/mm3, dibuat dalam sumsum tulang (megakariosit). Jika seseorang luka, keping darah mengalir bersama darah luka, pada waktu menyentuh permukaan luka akan pecah dan terbentuk trombokinase, dengan bantuan ion kalsium akan mengubah protrombin (dalam plasma darah) menjadi trombin. Trombin yang terbentuk akan mengubah fibrinogen menjadi fibrin (benang-benang halus) yang akan menutup luka sehingga perdarahan berhenti.


Proses pembekuan darah :


1. Trombosit pecah (anti hemofili) ---> Tromboplastin (trombokinase)


2. Protrombin ---> Trombin


3. Fibrinogen ---> Fibrin


2. Jantung


Jantung manusia letaknya dalam rongga dada dan diatas diafragma. Jantung terdiri atas : prikardium (pembungkus jantung), miokardium (otot jantung) dan endokardium (pembatas ruang jantung). Terdapat arteri umbilikus yang menghubungkan aliran darah pada fetus yang menyerap oksigen dan sari makanan, sedangkan foramen ovale merupakan lubang jantung pada fetus.


Jantung manusia terbagi menjadi 4 ruang yaitu 2 serambi (atrium) dan 2 bilik (ventrikel). Ventrikel (bilik) memiliki dinding yang lebih tebal dibanding atrium (serambi), bagian sebelah kiri juga lebih tebal dari yang sebelah kanan. Hal ini berkaitan dengan fungsinya yaitu bagian sebelah kiri untuk memompa darah bersih ke seluruh tubuh. Antara serambi kiri dan bilik kiri terdapat valvula bikuspidalis dan antara serambi kanan dan bilik kanan terdapat valvula trikuspidalis. Valvula semilunaris bentuknya seperti bulan sabit, terdapat pada klep jantung agar darah tetap searah.



Diastole merupakan darah yang dihisap masuk jantung, sedangkan sistole merupakan darah yang dipompa keluar jantung. Jadi pada orang yang tertera pada tensimeter dikatakan misalnya 120/100 mmHg merupakan tekanan sistole 120 per menit dan tekanan diastole 100 per menit. Koronariasis merupakan penyumbatan pada nadi tajuk/arteri koronaria pada jantung.


1. Pembuluh Darah


a. Pembuluh nadi (arteri)


· Fungsi arteri adalah untuk mengalirkan darah keluar dari jantung. Terdiri dari :


- Arteri pulmonalis, berfungsi mengalirkan darah dari bilik kanan ke paru-paru, banyak mengandung CO2.


- Aorta (nadi besar), berfungsi mengalirkan darah dari bilik kiri menuju seluruh tubuh, banyak mengandung oksigen.


b. Pembuluh balik (vena)


o Fungsi vena untuk mengalirkan darah menuju jantung. Terdiri dari :


- Vena pulmonalis, berfungsi mengalirkan darah dari paru-paru menuju serambi kiri jantung.


- Vena cava superior, berfungsi mengalirkan darah dari tubuh bagian atas.


- Vena cava inferior, berfungsi membawa darah dari tubuh bagian bawah.


c. Pembuluh kapiler


Pembuluh kapiler merupakan pembuluh darah yang sangat halus dan langsung berhubungan dengan sel-sel jaringan tubuh. Pembuluh kapiler menghubungkan ujung pembuluh nadi terkecil (arteriola) dan ujung pembuluh vena terkecil (venula).





Perbedaan antara arteri dan vena dapat diamati pada tabel berikut :


Pembuluh darah vena Pembuluh darah arteri
Ø Disebut sebagai pembuluh balik.
Ø Berisi darah kotor kecuali pada vena pulmonalis.
Ø Di sepanjang pembuluh banyak terdapat katup.
Ø Dinding tipis.
Ø Pembuluh ini terletak dekat permukaan tubuh.
Ø Apabila diraba tidak terasa. Ø Disebut sebagai pembuluh nadi.
Ø Berisi darah bersih kecuali pada arteri pulmonalis.
Ø Di sepanjang pembuluh hanya terdapat satu katup.
Ø Memiliki dinding yang tebal dan elastic.
Ø Pembuluh ini terletak di bagian dalam dari tubuh.
Ø Apabila diraba akan berdenyut.









B. SISTEM PEREDARAN DARAH MANUSIA


Sistem peredaran darah manusia ada dua yaitu system peredaran darah besar dan system peredaran darah kecil.


1. Sistem Peredaran Darah Besar (Sistemik)


Peredaran darah besar dimulai dari darah keluar dari jantung melalui aorta menuju ke seluruh tubuh (organ bagian atas dan organ bagian bawah). Melalui arteri darah yang kaya akan oksigen menuju ke sistem-sistem organ, maka disebut sebagai sistem peredaran sistemik. Dari sistem organ vena membawa darah kotor menuju ke jantung. Vena yang berasal dari sistem organ di atas jantung akan masuk ke bilik kanan melalui vena cava inferior, sementara vena yang berasal dari sistem organ di bawah jantung dibawa oleh vena cava posterior.


Darah kotor dari bilik kanan akan dialirkan ke serambi kanan, selanjutnya akan dipompa ke paru-paru melalui arteri pulmonalis. Arteri pulmonalis merupakan satu keunikan dalam sistem peredaran darah manusia karena merupakan satu-satunya arteri yang membawa darah kotor (darah yang mengandung CO2).


Urutan perjalanan peredaran darah besar : bilik kiri – aorta – pembuluh nadi – pembuluh kapiler – vena cava superior dan vena cava inferior – serambi kanan.



2. Sistem Peredaran Darah Kecil (Pulmonal)


Peredaran darah kecil dimulai dari dari darah kotor yang dibawa arteri pulmonalis dari serambi kanan menuju ke paru-paru. Dalam paru-paru tepatnya pada alveolus terjadi pertukaran gas antara O2 dan CO2. Gas O2 masuk melalui sistem respirasi dan CO2 akan dibuang ke luar tubuh. O2 yang masuk akan diikat oleh darah (dalam bentuk HbO) terjadi di dalam alveolus. Selanjutnya darah bersih ini akan keluar dari paru-paru melalui vena pulmonalis menuju ke jantung (bagian bilik kiri). Vena pulmonalis merupakan keunikan yang kedua dalam system peredaran darah manusia, karena merupakan satu-satunya vena yang membawa darah bersih.


Urutan perjalanan peredaran darah kecil : bilik kanan jantung – arteri pulmonalis – paru-paru – vena pulmonalis – serambi kiri jantung.



3. Pembuluh Limfe (Pembuluh Getah Bening)


Pembuluh limfe kanan; dari kepala, leher, dada, paru-paru, jantung dan lengan sebelah kanan, bermuara di pembuluh balik yang letaknya di bawah tulang selangka kanan.


Pembuluh limfe dada; dari bagian lain, bermuara dalam vena di bawah tulang selangka kiri.


Pembuluh limfe adalah bermuaranya pembuluh lemak (pembuluh kil). Peredaran limfe adalah terbuka, merupakan alat penyaring kuman, karena di kelenjar limfe diproduksi sejenis sel darah putih yang disebut limfosit untuk imunitas.





C. GANGGUAN PADA SISTEM PEREDARAN DARAH MANUSIA


Berikut beberapa gangguan pada sistem peredaran darah manusia.


1. Hemofili, merupakan suatu penyakit yang mengakibatkan darah tidak membeku secara genetis. Hemofili ini merupakan penyakit menurun.


2. Anemia, merupakan penyakit kekurangan darah yang dapat terjadi karena infeksi kuman misalnya apabila terkena cacing tambang, atau dapat juga karena berkurangnya kadar Hb dalam darah.


3. Leukimia (kanker darah) merupakan penyakit di mana pertambahan sel darah putih secara tidak terkendali (abnormal) sekitar 500.000/mm3 darah. Hal ini akan sangat merugikan si penderita karena sifat sel darah putih adalah memakan kuman penyakit, karena tidak ada kuman penyakit maka akan memakan sel darah merah yang ada.


4. Varises merupakan penyakit pelebaran pembuluh darah, biasanya di tangan/kaki. Penyakit ini biasanya dialami para wanita setelah melahirkan. Kemungkinan besar disebabkan oleh beban si ibu selama hamil dan masih aktif bekerja, apalagi sering menggunakan sepatu berhak tinggi. Tetapi tidak menutup kemungkinan terjadi pada pria pekerja berat misalnya kuli bangunan atau kuli pasar yang biasa mengangkat beban berat dan kaki sebagai tumpuannya.


5. Haemoroid (ambein), merupakan penyakit yang hamper sama dengan varises, tetapi terjadi di bagian dubur. Biasanya dialami oleh orang yang sering duduk dalam posisi yang sama dan dalam waktu yang lama. Gejala awal mula-mula apabila Buang Air Besar (BAB) terasa sakit, panas dan keluar darah menetes. Apabila tidak diobati kadang-kadang pada waktu duduk darah akan keluar sendiri dan membasahi celana, dan apabila sudah parah maka spinkter dalam akan keluar karena telah banyak pembuluh darah yang pecah. Apabila sampai hal ini terjadi maka harus segera dioperasi.


6. Koronariasis, merupakan penyakit di mana terjadi penyempitan nadi tajuk jantung (jantung koroner).


7. Hipertensi, merupakan penyakit di mana terjadi tekanan darah tinggi. Tekanan darah penderita hipertensi ini melebihi 200 mm Hg, sehingga akan berakibat pusing dan apabila mengalami jatuh dapat mengakibatkan terjadinya pecahnya pembuluh darah atau penyumbatan pembuluh darah (stroke).


8. Hipotensi merupakan kebalikan dari hipertensi yaitu orang yang memiliki darah kurang dari 100 mm Hg atau sering disebut dengan penyakit tekanan darah rendah. Biasanya penderita akan cepat merasa lelah dan kadang-kadang sering kesemutan di anggota gerak misalnya pada kaki dan tangan.


9. Pingsan, yaitu hilangnya kesadaran karena berkurangnya suplai oksigen yang dibawa oleh darah.


10. Thalasemia, yaitu penyakit kelainan darah turunan yang ditandai oleh adanya sel darah merah yang abnormal.

Lapisan Bumi

Struktur Lapisan Bumi

Bumi tempat kita tinggal saat ini merupakan salah satu anggota tata surya dengan matahari sebagai pusatnya. Jarak bumi dengan matahari sekitar 150 juta km. Bumi berbentuk bulat pepat dengan jari-jari ± 6.370 km. Bumi merupakan planet dengan urutan ketiga dari delapan planet yang dekat dengan matahari.Bumi diperkirakan telah terbentuk sekitar 4,6 milyar tahun yang lalu, dan merupakan satu-satunya planet yang dapat dihuni oleh berbagai jenis mahluk hidup. Permukaan bumi terdiri dari daratan dan lautan. Jika bumi diiris maka akan tampak lapisan-lapisan seperti pada gambar di bawah ini :
Gambar 2.1 Struktur lapisan bumi
Lapisan bumi dibagi menjadi tiga bagian, yaitu sebagai berikut :
1.) Kerak bumi
Kerak bumi adalah lapisan terluar bumi yang terbagi menjadi dua kategori, yaitu kerak samudra dan kerak benua. Kerak samudra mempunyai ketebalan sekitar 5-10 km sedangkan kerak benua mempunyai ketebalan sekitar 20-70 km.. Tebal lapisan kerak bumi mencapai 70 km dan merupakan lapisan tanah dan batuan .Lapisan ini menjadi tempat tinggal bagi seluruh mahluk hidup.Suhu di bagian bawah kerak bumi mencapai 1.100 derajad Celcius.Lapisan kerak bumi dan bagian di bawahnya hingga kedalaman 100 km dinamakan litosfer.
Unsur-unsur kimia utama pembentuk kerak bumi adalah: Oksigen (46,6%), Silikon (27,7%), Aluminium (8,1%), Besi (5,0%), Kalsium (3,6%) Natrium (2,8%), Kalium (2,6%) dan Magnesium (2,1%). Unsur–unsur tersebut membentuk satu senyawa yang disebut dengan batuan.
2.) Selimut atu Selubung Mantel
Selimut merupakan lapisan yang terletak di bawah lapisan kerak bumi.Tebal selimut bumi mencapai 2.900 km dan merupakan lapisan batuan padat.Suhu di bagian bawah selimut bumi mencapai 3.000 derajat Celcius.
3.) Inti Bumi
Inti bumi terdiri dari material cair, dengan penyusun utama logam besi (90%), nikel (8%), dan lain-lain yang terdapat pada kedalaman 2900–5200 km. Lapisan ini dibedakan menjadi lapisan inti luar dan lapisan inti dalam. Lapisan inti luar tebalnya sekitar 2.000 km dan terdiri atas besi cair yang suhunya mencapai 2.200 oC.Inti dalam merupakan pusat bumi berbentuk bola dengan diameter sekitar 2.700 km. Inti dalam ini terdiri dari nikel dan besi yang suhunya mencapai 4500oC.

Berdasarkan penyusunnya lapisan bumi terbagi atas litosfer, astenosfer, dan mesosfer. Litosfer adalah lapisan paling luar bumi (tebal kira-kira  100 km) dan terdiri dari kerak bumi dan bagian atas selubung. Litosfer memiliki kemampuan menahan beban permukaan yang luas misalkan gunungapi.Litosfer bersuhu dingin dan kaku.Di bawah litosfer pada kedalaman kira-kira 700 km terdapat astenosfer.Astenosfer hampir berada dalam titik leburnya dan karena itu bersifat seperti fluida.Astenosfer mengalir akibat tekanan yang terjadi sepanjang waktu.Lapisan berikutnya mesosfer.Mesosfer lebih kaku dibandingkan astenosfer namun lebih kental dibandingkan litosfer.Mesosfer terdiri dari sebagian besar selubung hingga inti bumi.Permukaan bumi ini terbagi atas kira-kira 20 pecahan besar yang disebut lempeng. Ketebalannya sekitar 70 km. Ketebalan lempeng kira-kira hampir sama dengan litosfer yang merupakan kulit terluar bumi yang padat. Litosfer terdiri dari kerak dan selubung atas.Lempengnya kaku dan lempeng-lempeng itu bergerak diatas astenosfer yang lebih cair.Arus konveksi memindahkan panas melalui zat cair atau gas, yang membuat lempeng-lempeng dapat bergerak, yang dapat menimbulkan getaran yang terjadi dipermukaan bumi.

Sumber : http://fiflowers.wordpress.com/geofisika/struktur-lapisan-bumi/

Macam – Macam Adaptasi Pada Makhluk Hidup




Kelangsungan hidup organisme dipengaruhi oleh 3 hal, yakni adaptasi, seleksi alam serta perkembangbiakan. Dengan beradaptasi, makhluk hidup yang mampu bertahan akan berlangsung hidupnya , yang tidak mampu bertahan akan punah, dalam peristiwa inilah alam akan berperan sebagai penyeleksi. Sedangkan perkembangbiakan untuk melestarikan jenisnya, sehingga kelangsungan hidupnya terjaga.

 A. ADAPTASI

Adaptasi adalah kemampuan makhluk hidup untuk menyesuaikan diri dengan lingkungan hidupnya. Berdasarkan bentuknya, adaptasi diklasifikasikan menjadi 3, yakni: adaptasi Morfologi (bentuk tubuh), adaptasi Fisiologi ( fungsi kerja tubuh), serta adaptasi tingkah laku (behavioral).

1. Adaptasi Morfologi

Adaptasi Morfologi adalah penyesuaian makhluk hidup melalui perubahan bentuk organ tubuh yang berlangsung sangat lama untuk kelangsungan hidupnya. Adaptasi ini sangat mudah dikenali dan mudah diamati karena tampak dari luar.

Contoh: aneka jenis paruh dan kaki burung, beragam tipe mulut serangga, aneka ragam jenis akar, batang dan daun pada tanaman.

Adaptasi morfologi  pada hewan

a. Burung

Burung memiliki bentuk kaki yang berbeda-beda disesuaikan dengan tempat hidupnya dan jenis mangsa yang dimakannya. Berdasarkan lingkungan dan jenis makanan yang dimakannya, bentuk kaki burung dikelompokkan menjadi lima,

Ayam

kaki-burung

Bentuk paruh burung juga beraneka ragam. Keanekaragaman bentuk paruh burung sesuai dengan jenis makanannya. Perhatikan keanekaragaman bentuk paruh burung pada tabel 3.2

paruh (1)

b. Serangga

Untuk memperoleh makanannya, serangga memiliki cara tersendiri. Salah satu bentuk penyesuaian dirinya adalah bentuk mulut yang bebedabeda sesuai dengan jenis makanannya. Bedasarkan jenis makanan yang dimakannya, jenis mulut serangga dibedakan menjadi empat, yaitu mulutpengisap, mulut penusuk, mulut penjilat, dan mulut penyerap.

1) Mulut pengisap

Mulut pengisap pada serangga bentuknya seperti belalai yang dapat digulung dan dijulurkan. Contoh serangga yang memiliki mulut pengisap adalah kupu-kupu. Kupu-kupu menggunakan mulut pengisap untuk mengisap madu dari bunga.

2) Mulut penusuk dan penghisap

Mulut penusuk dan penghisap pada serangga memiliki ciri bentuk yang tajam dan panjang. Contoh serangga yang memiliki mulut penusuk dan penghisap adalah nyamuk. Nyamuk menggunakan mulutnya untuk menusuk kulit manusia kemudian menghisap darah. Jadi, selain mulutnya berfungsi sebagai penusuk juga berfungsi sebagai pengisap.

3) Mulut penjilat

Mulut penjilat pada serangga memiliki ciri terdapatnya lidah yang panjang dan berguna untuk menjilat makanan berupa nektar dari bunga, contoh serangga yang memiliki mulut penjilat adalah lebah.

4) Mulut penyerap

Mulut penyerap pada serangga memiliki ciri terdapatnya alat penyerap yang mirip spons (gabus). Alat ini digunakan untuk menyerap makanan terutama yang berbentuk cair. Contoh serangga yang memiliki mulut penyerap adalah lalat.

Mulut Serangga

c. Unta

Unta hidup di daerah padang pasir yang kering dan gersang. Oleh karena itu bentuk tubuhnya disesuaikan dengan keadaan lingkungan padang pasir. Bentuk penyesuaian diri unta adalah adanya tempat penyimpanan air di dalam tubuhnya dan memiliki punuk sebagai penyimpan lemak. Hal inilah yang menyebabkan unta dapat bertahan hidup tanpa minum air dalam waktu yang lama.

d. Bentuk Gigi secara khusus

Gigi hewan karnivora atau pemakan daging beradaptasi menjadi empat gigi taring besar dan runcing untuk menangkap mangsa, serta gigi geraham dengan ujung pemotong yang tajam untuk mencabik-cabik mangsanya.

e. Bentuk Moncong

  • Trenggiling besar adalah hewan menyusui yang hidup di hutan rimba Amerika Tengah dan Selatan.
  • Makanan trenggiling adalah semut, rayap, dan serangga lain yang merayap.
  • Hewan ini mempunyai moncong panjang dengan ujung mulut kecil tak bergigi dengan lubang berbentuk celah kecil untuk mengisap semut dari sarangnya.
  • Hewan ini mempunyai lidah panjang dan bergetah yangdapat dijulurkan jauh keluar mulut untuk menangkap serangga

Adaptasi Morfologi pada Tumbuhan

Berdasarkan tempat hidupnya, tumbuhan dibedakan menjadi sebagai berikut.

  • Xerofit, yaitu tumbuhan yang menyesuaikan diri dengan lingkungan yang kering, contohnya kaktus.

Cara adaptasi xerofit. antara lain mempunyai daun berukuran kecil atau bahkan tidak berdaun (mengalami modifikasi menjadi duri), batang dilapisi lapisan lilin yang tebal, dan berakar panjang sehingga berjangkauan sangat luas.

kaktus

  • Hidrofit. yaitu tumbuhan yang menyesuaikan diri dengan lingkungan berair, contohnya teratai.

Cara adaptasi hidrofit, antara lain berdaun lebar dan tipis, serta mempunyai banyak stomata. Batangnya  berongga  berisi udara sehingga bias mengapung.

teratai

  • Higrofit, yaitu tumbuhan yang menyesuaikan diri dengan lingkungan lembap, contohnya tumbuhan paku dan lumut.

paku n lumut

  • Daun; Tumbuhan insektivora (tumbuhan pemakan serangga), misalnya kantong semar, memiliki daun yang berbentuk piala dengan permukaan dalam yang licin sehingga dapat menggelincirkan serangga yang hinggap.

Dengan enzim yang dimiliki tumbuhan insektivora, serangga tersebut akan dilumatkan, sehingga tumbuhan ini memperoleh unsur yang diperlukan.

kantung semar

  • Bunga; Bentuk bunga tumbuhan  juga dapat dianggap sebagai adaptasi morfologi. Bentuk bunga  ini berkaitan dengan cara penyerbukannya. Tumbuhan yang penyerbukannya dibantu serangga umumnya memiliki warna perhiasan bunga yang menarik.

kelopak bunga

  • Akar; Akar tumbuhan gurun kuat dan panjang,berfungsi untuk menyerap air yang terdapat jauh di dalam tanah. Sedangkan akar hawa pada tumbuhan bakau untuk bernapas.

bakau

2. Adaptasi Fisiologi

Adaptasi Fisiologi adalah penyesuaian diri makhluk hidup melalui fungsi kerja organ bisa bertahan hidup. Adaptasi ini berlangsung di dalam tubuh, sehingga sulit untuk diamati.

Beberapa contoh  adaptasi fisiologi

  • Adaptasi Fisiologi pada Manusia

  1. Jumlah sel darah merah orang yang tinggal di pegunungan lebih banyak jika dibandingkan dengan orang yang tinggal di pantai/dataran rendah.
  2. Ukuran jantung para atlet rata-rata lebih besar dari pada ukuran jantung orang kebanyakan.
  3. Pada saat udara dingin, orang cenderung lebih banyak mengeluarkan urine (air seni).

  • Adaptasi Fisiologi pada Hewan

Berdasarkan jenis makanannya, hewan dapat dibedakan menjadi karnivor (pemakan daging). herbivor memakan tumbuhan), serta omnivor (pemakan daging dan turnbuhan). Penyesuaian hewan-hewan tersebut terhadap jenis makanannya. antara lain terdapat pada ukuran (panjang) usus dan enzim pencernaan yang berbeda. Untuk mencerna tumbuhan yang umumnya mempunyai sel-sel berdinding sel keras, rata-rata usus herbrvor lebih panjang daripada usus karnivor:

Sistem Pencernaan Khusus pada hewan Ruminansia

Hewan Ruminansia (pemakan rumput), memiliki tipe pencernaan khusus untuk mencerna rumput-rumputan yang memiliki dinding sel. Hewan ini bisa mencerna makanan di lambung.

Sistem Kerja Tubuh pada Ikan Air Laut

Ikan air laut menghasilkan urine yang lebih pekat dibandingkan dengan ikan sungai. Hal ini disebabkan kadar garam air laut lebih tinggi daripada kadara garam air tawar,

sehingga menyebabkan ikan air laut kek Akibatnya, kadar garam dalam darahnya menjadi tinggi sehingga mengurangi kepekatan cairan dalam tubuhnya, ikan mengeluarkan urine yang pekat.

Kecepatan Metabolisme. Ketika  berada di daerah dingin , kecepatan metabolism hewan berdarah panas  akan meningkat.

  • Adaptasi Fisiologi pada Tumbuhan

  1. Tumbuhan yang penyerbukannya dibantu oleh serangga mempunyai bunga yang berbau khas.
  2. Tumbuhan tertentu menghasilkan zat khusus yang dapat menghambat pertumbuhan tumbuhan lain atau melindungi diri terhadap herbivor. Misalnya. semak azalea di Jepang menghasilkan bahan kimia beracun sehingga rusa tidak memakan daunnya. ( zat alelopati )

3. Adaptasi Tingkah Laku

                Penyesuaian Tingkah Laku terhadap Lingkungan


Beberapa jenis hewan ada yang menyesuaikan diri dengan lingkungan dengan cara mengubah tingkah laku. Cara ini selain untuk mendapatkan makanan juga untuk melindungi diri dari musuh atau pemangsa. Perhatikan beberapa contoh hewan yang menyesuaikan diri dengan tingkah laku berikut ini!

a. Bunglon


Kalian tentu pernah melihat bagaimana bunglon dapat merubah warna kulitnya sesuai dengan warna tempat ia berada. Ketika berada di pohon yang berwarna coklat maka tubuh bunglon akan berrwarna coklat. Begitu juga ketika ia berada di pohon yang berwarna hijau maka tubuhnya akan berwarna hijau. Perubahan warna tubuh pada bunglon merupakan bentuk penyesuaian diri agar ia terlindung dari musuhnya. Perubahan warna kulit sesuai dengan warna lingkunagannya seperti yang dilakukan olehBunglon dinamakan mimikri.

b. Kalajengking


Kalajengking melindungi dirinya dari musuh dengan menggunakan sengatnya. Sengatnya ini mengandung racun yang dapat membunuh musuhnya. Selain kelajengking, hewan lain yang menggunakan zat racun untuk melindungi dirinya dari serangan musuh adalah, kelabang, lebah, dan ular.

c. Cumi-Cumi


Cumi-cumi melindungi diri dari musuhnya dengan cara menyemburkan cairan, seperti tinta ke dalam air. Hal ini menyebabkan musuh yang menyerangnya tidak dapat melihatnya dan ia dapat berenang dengan cepat untuk menghindari musuhnya tersebut.

d. Siput

Siput memiliki pelindung tubuh yang keras dan kuat yang disebut cangkang. Hewan jenis ini melindungi diri dari musuhnya dengan cara memasukkan tubuhnya kedalam cangkang. Selain siput, kura-kura, dan penyu juga memiliki cangkang yang digunakan untuk melindungi diri dari musuhnya.

e. Cecak


Cicak merupakan contoh hewan yang ekornya mudah putus. Dalam keadaan bahaya, cicak mengelabuhi musuhnya dengan cara memutuskan ekornya. Kejadian ini dinamakn autotomi. Jika seekor cicak dikejar pemangsa,ekornya secara mendadak putus dan bergerak-gerak sehingga perhatian pemangsa akan tertuju pada ekor yang bergerak-gerak tersebut. Kesempatan itulah yang digunakan cicak untuk menghindarkan diri dari kejaran predator.

f. Ikan paus

Paus adalah mamalia yang hidup di air. Seperti hewan mamalia yang lain, walaupun hidup di air paus bernapas menggunakan paru-paru. Padahal paru-paru tidak dapat mengambil oksigen dari air. Paus dan semua mamalia yang hidup di air, kurang lebih tiap tiga puluh menit muncul ke permukaan air untuk menghirup oksigen. Mungkin kalian pernah melihat bagaimana perilaku paus lewat siaran televisi. Ketika muncul ke permukaan air laut, paus mengeluarkan sisa pernapasan berupa karbondioksida dan uap air yang sudah jenuh dengan air sehingga terlihat seperti air mancur. Setelah itu paus menghirup udara sebanyak-banyaknya sehingga paru-parunya penuh dengan udara.

g. Hibernasi dan estivasi

Pada musum dingin banyak hewan berdarah panas membutuhkan energi tambahan untuk menjaga suhu tubuhnya, tetapi makanan sangat langka. Untuk dapat bertahan maka beberapa hewn, misalnya tikus, landak, beruang hitam dan lain-lain melakukan hibernasi, yaitu tidur panjang di musim dingin. Demikian pula untuk hewan yang hidup di daerah guru yang sangat panas dan pada musim kemarau mempunyai perilaku tertentu yang yaitu melakkukan estivasi yaitu tidur panjang di musim kemarau, supaya dapat bertahan hidup di daerah gurun. Misalnya pada kadal, katak, keong, dan lain-lain.


Sumber : http://hrysainsbiologi.wordpress.com/2013/02/17/macam-macam-adaptasi-pada-makhluk-hidup/

Sejarah Arsitektur Bangunan

Sejarah arsitektur melacak perubahan pada sejarah arsitektur melalui berbagai negara-negara dan waktu.

1. Arsitektur Prasejarah

Arsitektur Neolithic









Gambar 1.1 Penggalian bekas pemukiman di Skara Brae

Arsitektur Neolithic adalah arsitektur dari periode Neolithic. Di Southwest Asia, kultur Neolithic nampak setelah 10000 BC, pada awalnya di Levant ( Pre-Pottery Neolithic A) dan Pre-Pottery Neolithic B) dan dari sana menyebar ke arah timur dan arah barat. Ada awal kultur Neolithic di Southeast Anatolia, Iraq dan Syria pada 8000 BC, dan masyarakat memproduksi-makanan yang pertama nampak di Europe bagian tenggara pada 7000 BC, dan Central Europe pada 5500 BC yang mana paling awal budaya kompleks meliputi Starčevo-Koros (Cris), Linearbandkeramic, dan Vinca). Dengan perkecualian yang sangat kecil ( beberapa tombak dan kampak tembaga terdapat di daerah Great Lake), masyarakat Amerika dan Pacific meninggalkan budaya Neolitic setelah mendapatkan kontak dari eropa

Orang-Orang neolithic di Levant, Anatolia, Syria, Asia Tengah dan Mesopotamia utara adalah para pembangun besar, mereka memanfaatkan batu bata-lumpur untuk membangun desa dan rumah. Pada Çatalhöyük, rumah diplester dan dicat dengan pemandangan yang rumit tentang binatang dan manusia. Di Eropa, rumah panjang dibangun dari konstruksi lumuran dan anyaman dahan kayu. Pusara yang besar untuk orang mati juga dibangun. Pusara ini terutama banyak sekali terdapat di Irlandia, keberadaannya berjumlah ribuan. Orang-Orang Neolithic di British Isles membangun long barrows dan kamar mayat untuk kematian mereka causewayed camps, henges flint mines dan monumen terkutuk.

2.Arsitektur Mesir Masa Lampau










Gambar 2.2 Dekorasi langit-langit di aula Medinet Habu,dimana terdapat deretan tiang bulat- sebuah contoh dari Arsitektur mesir masa lampau

Pada awalnya, ras manusia melihat dunia secara keseluruhan penuh dengan para dewa, minuman keras dan roh. Jalan di mana orang-orang mencapai kata mufakat dengan lingkungan dekat mereka adalah dengan didasarkan pada kemahakuasaan dari Dewa. Banyak aspek dari kehidupan yang sehari-hari dilaksanakan berkenaan dengan gagasan untuk ilahi atau hal-hal yang gaib dan jalan itu hadir di dalam siklus kematian dari generasi, tahun, musim, hari dan malam. Panen sebagai contoh dilihat seperti kebaikan dari dewa kesuburan.

Demikian pula,pendirian dan perintah dari kota dan bangunan terpenting dari kota tersebut ( kuil atau istana) dijalankan oleh para imam atau bahkan penguasa dan pembangunan konstruksinya di iringi oleh upacara agama yang bermaksud agar aktifitas manusia mendapatkan berkah dari yang ilahi.

Arsitektur Mesir masa lampau dikarakterisasikan oleh ketegangan antara dunia kematian yang ilahi dan kehidupan abadi. Kota akan dipengaruhi oleh kesucian alam luar dan kuil atau istana akan bertindak sebagai rumah Tuhan. Arsitek,menjadi imam atau raja adalah bukan yang penting; mereka hanya bagian dari tradisi yang berkelanjutan

3. Arsitektur Roma















Gambar 3.1 Saluran Air Segovia

Penggunaan dari bangunan lengkung Roma dan peningkatan mereka pada penggunaan beton memudahkan pembangunan saluran air sepanjang wilayah kerajaan, yang sangat bagus seperti Aqueduct Segovia dan sebelas saluran air di Roma, seperti Anio Novus dan Aqua Claudia. Pengizinan konstruksi langit-langit kubah yang melengkung dan memungkinkan menutupi ruang terbuka seperti pemandian umum dan basilika. Orang-Orang Roma mendasarkan banyak bangunan arsitektur mereka pada bentuk kubah, seperti Hadrian's Pantheon di kota Roma, dan Pemandian di Diocletian












Gambar 3.2 Sisa dari Pemandian di Diocletian, Roma. Sketsa dibuat oleh Etienne_Du_Pérac pada abad ke 16
Sejarawan seni seperti Gottfried Richter pada abad ke 20 di kenali sebagai arsitektur inovasi roma dari Triumphal Arch dan bisa kita lihat dari bagaimana simbol dari bumi diubah dan dimanfaatkan di dalam basilika Kristen ketika Kerajaan Romawi dari Barat hampir tidak berguna lagi. Bangunan lengkung menyajikan altar untuk menandakan kemenangan dari Kristus dan kehidupan setelahnya. Bangunan lengkung juga terdapat pada saluran air yang mengesankan mereka yang lihat bahwa bangunan lengkung berjaya pada zaman itu, terutama karena banyak nyawa orang terselamatkan contoh, seperti Pont du Gard, saluran air pada Segovia dan sisa Aqueducts dari Roma sendiri. Perjuangan mereka adalah kesaksian bagi apa yang mereka desain dan bahan-bahan yang mereka gunakan.
4. Arsitektur Afrika











Gambar 4.1 Menara yang berbentuk kerucut di dalam Great Enclosure di Great Zimbabwe, suatu kota pertengahan Afrika yang dibangun oleh suatu kultur yang makmur

Awal Arsitektur Afrika terdiri atas prestasi dari orang mesir masa lampau. Great Zimbabwe adalah kota paling besar di pertengahan di sub-Saharan Afrika. Pada akhir abad ke 19, kebanyakan bangunan bercerminkan gaya fashionabel ekletik Eropa yang modern dan Mediterania lampau, atau bahkan gaya eropa Utara. Di daerah Western Sahel, pengaruh Islam adalah suatu faktor penyokong utama ke pengembangan arsitektural dimulai pada saat kerajaan Ghana.

Di Kumbi Saleh, penduduk lokal bertempat tinggal di domed-shaped bagian dari kota raja, yang dikeleilingi oleh tanah berpagar yang luas.Pedagang tinggal di dalam rumah batu dalam suatu bagian kawasan yang memiliki 12 mesjid yang indah, seperti diuraikan oleh al-bakri, dengan seseorang yang tengah shalat jumat. Raja mengatakan bahwa dia sudah memiliki beberapa mansion, salah satu dari beberapa mansion itu mempunyai tinggi enampuluh kaki, duapuluh empat kaki lebarnya, berisi tujuh ruang, dengan dua tingkat bangunan dan mempunyai suatu tangga dalam rumah; dengan kamar dan dinding yang diisi dengan pahatan dan lukisan.

Arsitektur Sahelian pada awalnya tumbuh dari dua kota yaitu Djenné dan Timbuktu. Mesjid Sankore di Timbuktu, dibangun dari lumpur dalam kayu, gaya ini serupa dengan gaya Masjid Djenné. Kebangkitan dari kerajaan di Afrika Barat terletak di sepanjang daerah pesisir pantai Afrika dengan gaya arsitektur pribumi, memanfaatkan kayu. Benin City yang terkenal, yang dibinasakan oleh Punitive Expedition, adalah suatu kompleks besar perumahan yang terbuat dari lumpur, dengan atap sirap dan daun palm. Istana mempunyai suatu rangkaian ruang upacara dan telah didekorasi dengan bahan kuningan.

5. Arsitektur China











Gambar 5.1 Di dalam Forbidden City- suatu contoh dari arsitektur Cina pada abad ke 15

Dari zaman neolitihic era Longshan Kultur dan zaman Bronze Age era Erlitou kultur, perbentengan bumi paling awal yang telah hancur,dengan bukti dari arsitektur kayu. Reruntuhan di bawah tanah istana Yinxu, yang apabila kita lihat waktunya bersal dari dinasti Shang (c. 1600 BC-1046 BC). Di Negeri China yang bersejarah, penekanan arsitektural diletakkan pada poros horisontal, khususnya konstruksi dari suatu platform yang berat dan suatu atap yang besar yang terkesan mengapung di atas dasar bangunan tersebut, dengan dinding yang vertikal yang kurang tegas.

Membandingkan arsitektur barat, yang berkembang ke arah kedalaman dan tingginya. arsitektur Cina menekankan dampak yang visuil dari lebar dari bangunan tersebut. Penyimpangan dari standard ini adalah arsitektur menara dari tradisi Cina, yang dimulai sebagai tradisi penduduk pribumi china dan secepatnya dipengaruhi oleh aliran Budha untuk membangun bangunan religius Budha, sutras - stupa - yang datang dari India.

Model Pusara Cina masa lampau disajikan dari berbagai cerita menara dan menara pengawas masa lampau, tercatat pada dinasti Han ( 202 BC-220 AD). Bagaimanapun, pagoda Cina Budha yang paling awal, yang masih ada adalah Pagoda Songyue, 40 m ( 131 kaki) menara batu bata jangkung melingkar dibangun di provinsi Henan pada tahun 523 AD. Dari abad ke 6, struktur didasarkan pada batu, batu menjadi lebih umum, selagi masa paling awal bangunan di China adalah dari batu dan bata melengkung baru ditemukan pada pusara Dinasti Han. Jembatan Zhaozhou dibangun pada tahun 595 sampai 605 AD adalah jembatan baru China yang paling tua yang masih ada, seperti halnya bangunan paling tua dunia lainnya secara penuh jembatan ini terbuat dari batu dengan sistem open-spandrel bagian dari jembatan melengkung.



















Gambar 5.2 Iron Pagoda dari Kaifeng, yang dibangun pada tahun 1049 sepanjang Dinasti Song.
Jurusan perdagangan arsitek, ahli pertukangan, dan insinyur bukan kalangan orang terhormat di masyarakat Cina premodern tetapi sebagai sarjana birokrasi yang mengambil tindakan ke dalam pemerintahan dengan cara sistem pengujian yang diadakan oleh seluruh departemen negara. Sebagian besar pengetahuan tentang awal arsitektur Cina diteruskan dari satu pedagang kepada putranya atau muridnya. Bagaimanapun, ada beberapa awal acuan arsitektur di Negeri China, dengan informasi seperti ensiklopedi pada penanggalan arsitektur di Dinasti Han. Tingginya tradisi Arsitektur Cina klasik di dalam menulis dan ilustrasi dapat ditemukan di Yingzao Fashi, suatu bangunan manual yang ditulis pada tahun 1100 dan diterbitkan oleh Lie Jie ( 1065-1110) pada tahun 1103. Di dalamnya ada banyak diagram dan ilustrasi yang sangat teliti yang mempertunjukkan perakitan dari hall dan komponen bangunannya, seperti halnya jenis penggolongan struktur dan komponen bangunan.

Ada permintaan bangunan Arsitektur tertentu yang dipesan semata-mata dibangun untuk Penguasa Negeri China. Salah satu contoh adalah penggunaan dari pekerjaan ubin atap berwarna kuning; kuning memiliki makna penguasa, pengecatan ubin atap berwarna kuning masih menghiasi kebanyakan dari bangunan di dalam Forbidden City. Kuil Surga,menggunakan atap berwarna biru untuk menandakan langit. Bentuk atap selalu saja kurung, yang juga merupakan bagian paling terbesar dalam bangunan religius cina. Kolom bangunan terbuat dari kayu, seperti halnya permukaan dinding, cenderung berwarna merah.

Zaman sekarang arsitektur Cina kebanyakan mengikuti gaya post modern dan gaya barat

NB : maaf lagi:) masih bersambung ..... belum selesai jadii.. harap tunggu posting berikutnya sekitar paling lambat seminggu...di hitung dari hari ini. saya sibuk mencari bahan buat TUGAS AKHIR. terima kasih bagi yang bisa membantu mengusulkan judul yang tepat buat T.A saya. silahkan tulis di shoutbox. mohon bantuannya

Minggu, 08 Februari 2009

ARSITEKTUR TRADISIONAL JEPANG

0 komentar










(Gambar 1.1)
Fasad rumah tradisional dengan bangku duduk yang didominasi bahan kayu serta pintu geser arah horizontal dan vertikal dari kayu.

Zaman Edo berlangsung sekitar tahun 1600–1868 ketika Jepang di bawah pemerintahan Sogun menutup pengaruh dan hubungannya dengan dunia Barat. Keputusan itu tercermin pada pola perkembangan kota kecil di sepanjang jalur Nakasendo, salah satu di antaranya dapat dilihat di desa kuno Tsumago yang bangunan rumah tinggalnya tampak jelas didominasi corak arsitektur tradisional Jepang gaya Edo.
Beberapa jalan kecil berupa gang juga sangat menarik diikuti karena dari jalan kecil tersebut kita dapat melihat taman gaya Jepang di area halaman belakang dan depan rumah. Taman yang dilengkapi kolam batu alam dilengkapi bonsai, pancuran air dari bambu, dan kerajinan bambu lain menambah daya tarik kawasan ini.












(Gambar 1.2)
Rumah tradisional Jepang berbahan kayu dan atap ditindih batu dengan aksesori fasade khas Jepang

Kebanyakan bangunan utama di kawasan ini terbuat dari papan yang bila kita lihat lebih jauh menunjukkan kedekatan kehidupan Tsumago dengan pertanian, perdagangan, dan bisnis jasa yang menjadi mata pencarian utama penduduk pada masa Sogun.

Atap yang ditindih batu untuk menahan agar tidak terbang tertiup angin dengan talang air pada sisi atap dan menyalurkan air ke tanah yang terbuat dari bambu juga menunjukkan kecerdikan dan pemikiran unsur teknis tukang bangunan masa Edo. Ruangan dengan lantai tanah, tatami, dan fondasi batu alam yang ditindih bangunan bahan kayu menjadi salah satu ciri khusus.
Dengan struktur bangunan kayu berpintu geser dengan teralis kayu horizontal dan vertikal memperlihatkan gaya arsitektur tradisional jepang kuno. (gambar 1.3)













(gambar 1.3)
Tidak hanya citranya, tetapi konstruksinya pun sederhana sekali “ semakin sedikit, semakin baik”. Prinsip ini sudah diambil alih dalam seni arsitektur internasional.

INTERIOR RUMAH TRADISIONAL JEPANG
Sudah sejak abad ke 18 masyrakat Barat yang sudah diresapi citarasa matematika dan penalaran segala bidang kehidupan menemukan jepang sebagai negeri selera ningrat dan citarasa yang sangat cocok dengan dambaan manusia kebudayan industri yakni perpaduan antara yang eksak matematis dan yang menumbuhkan haru pada segala yang indah. Maka garis-garis dan kepolosan dinding-dinding geometrik yang menandai seluruh arsitektur jepang mereka jadikan contoh ekspresi. (lihat gambar 1.4)















(Gambar 1.4)
Interior dan pemilihan bahan rumah Jepang Tradisional ini pun masih sama napas cita rasanya. Dinding-dinding tipis, nyaris tidak bermateri (kertas pun masih dipakai untuk dinding-dinding ruangan). Tidak aman memang dan sangat dingin di musim salju,tetapi sikap Shinto satu dengan alam tetap dimenangkan.

Melalui gambar ini dan seterusnya kita dapat mempelajari dampak dan hikam akrsitekutur tradisional Jepang yang kontemporer secara lebih terperinci. Tampaklah betapa sangat mungkinlah modernisasi dengan bahasa kontemporer, tanpa meninggalkan kekhasan pribadi pribumi.

Maka perhatikan gambar 1.5 dalam pasal 9 dari arsitektur modern tahun-tahun 20-30an. Tampaklah ciri ke Jepangan pada bangunan dan perabot rumah itu. Lihat gambar (1.5)












(gambar 1.5)
Citarasa kepolosan dan kesederhanaan yang bernapas Shinto itu lebih meluas lagi sesudah Perang Dunia II, yang ternyata sedambaan dengan citarasa menusia yang baru saja dianiaya oleh wabah bahasa Meriam dan bom dunia industri. Di sini selera dan citra arjuna sangatlah jelas.

Perhatikan dinding-dinding, lantai dan langit-langit. Semua serba bidang polos, dapat dikatakan tanpa hiasan apapun. Satu-satunya “hiasan” hanyalah permainan garis-garis lurus dan bidang-bidang murni. Ditambah gambar bergaya sangat hekmat goresan, kaligrafi sajak satu saja di ruang utama dengan tokonominya. (lihat gambar 1.6)






















(gambar 1.6)
Dalam ruang utama, tempat penerimaan tamu, dibuat panggung kecil yang berdinding mundur sebagai tempat keramat, suatu fokus, tempat orientasi diri psikologis dalam rumah, yang disebut tokonoma. Kadang-kadang lukisan diganti dengan yang lain, atau dipajang satu syair dengan seni kaligrafi indah, demi percakapan tenbtang puisi atau tukar-menukar kearifan, pengetahuan budaya.























(gambar 1.7)
Ruang Panti minum Bosen , dari biara Kohoran. Lihatlah bagaimana sekian unsur kontras bermain dalam melodi tesa-antitesa-sintesa:
1. Luar dan Dalam.
2. Garis bidang geometrik lurus-datar-ketat dan bentuk-bentuk organik luwes.
3. kebersihan polos netral warna di dalam dan yang serba variasi warna-warni di luar.



















(Gambar 1.8)
Denah Rumah tradisional Jepang dengan pembagian ruang yang berbentuk sederhana yaitu kotak atau persegi. Manusia modern abad ke 20 memang sedang gandrung pada segala hal yang geometris. Tetapi geometriks yang menyentuh kalbu hati. Dan apa yang menjadi kenyataan budaya arsitektur dari seorang tokoh dan perintis arsitektur modern, Mies Van der Rohe? Mies van der Rohe merumuskannya demikian: “semakin sedikit semakin baik”. Tetapi perumusan yang menjadi tersohor itu praktis sudah dikerjakan berabad-abad oleh orang-orang yang berjiwa Shinto dan Budha Zen.



Sumber : http://rurucoret.blogspot.com/

Asal-Usul Tata Surya

Asal usul

Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, beberapa di antaranya adalah:

Pierre-Simon Laplace, pendukung Hipotesis Nebula

Gerard Kuiper, pendukung Hipotesis Kondensasi

Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling Matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]

Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan Matahari, dan bersama proses internal Matahari, menarik materi berulang kali dari Matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari Matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.

Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada Matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari Matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]

Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.

Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.

Struktur


Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.

Orbit-orbit Tata Surya dengan skala yang sesungguhnya

Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[5] Yupiter dan Saturnus, dua komponen terbesar yang mengedari Matahari, mencakup kira-kira 90 persen massa selebihnya.[c]
Hampir semua objek-objek besar yang mengorbit Matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi Matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara Matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling Matahari bergerak mengikuti bentuk elips dengan Matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari Matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan Matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan Matahari dinamai perihelion, sedangkan jarak terjauh dari Matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari Matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.

Terminologi

Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[6] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.[7]
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari Matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8]
Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi Matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[8] Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris.[9] Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid".[10] Sisa objek-objek lain berikutnya yang mengitari Matahari adalah benda kecil Tata Surya.[8]
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[11] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[12]
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.

Zona planet


Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari Matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan Matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.

Matahari


Matahari dilihat dari spektrum sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, Matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan Matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari Matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[13]
Dipercayai bahwa posisi Matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang.[14]
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".[15] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini.
Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[16]

Medium antarplanet


Lembar aliran heliosfer, karena gerak rotasi magnetis Matahari terhadap medium antarplanet.
Di samping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin surya. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[17] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet.
Badai geomagnetis pada permukaan Matahari, seperti semburan Matahari (solar flares) dan lontaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[18] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis Matahari terhadap medium antarplanet.[19][20] Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin surya. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[21] Interaksi antara angin surya dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet Matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[22]
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[23] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.[24][25]

Tata Surya bagian dalam

Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.

Planet-planet bagian dalam


Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
Merkurius

Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal Matahari.[28][29]
Venus

Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.[31]
Bumi

Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars

Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]

Sabuk asteroid


Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.[35]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.[36]
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.[37]
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer.[38] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[39] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.[40]
Ceres

Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[41] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. satelit asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari satelit-satelit planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.[42]
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari Matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.

Tata Surya bagian luar

Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut "es" dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.

Planet-planet luar


Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit Matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[43] Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
Yupiter

Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[44] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus

Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[45] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
Uranus

Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari Matahari dengan bujkuran poros 90 derajat pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[46] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus

Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus.[47] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[48] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.

Komet


Komet Hale-Bopp
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari Matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[49] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[50] Komet tua yang bahan volatilesnya telah habis karena panas Matahari sering dikategorikan sebagai asteroid.[51]

Centaur

Centaur adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[52] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati Matahari.[53] Beberapa astronom mengklasifikasikan Centaurs sebagai objek sabuk Kuiper sebaran-ke-dalam (inward-scattered Kuiper belt objects), seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[54]

Daerah trans-Neptunus


Plot seluruh objek sabuk Kuiper

Diagram yang menunjukkan pembagian sabuk Kuiper
Daerah yang terletak jauh melampaui Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.

Sabuk Kuiper

Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari benda kecil Tata Surya. Meski demikian, beberapa objek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi.[55] Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[56] Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [57]
Pluto dan Charon

Pluto dan ketiga satelitnya
Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah objek terbesar sejauh ini di Sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang kesembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari Matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.
Tidak jelas apakah Charon, satelit Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau menjadi sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitasi di atas permukaannya, yang membuat Pluto-Charon sebuah sistem ganda. Dua satelit yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari Matahari dua kali untuk setiap tiga edaran Neptunus. Objek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutino.[58]
Haumea dan Makemake
Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua objek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah objek berbentuk telur dan memiliki dua satelit. Makemake adalah objek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [59] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Objek Sabuk Kuiper klasik.

Piringan tersebar


Hitam: tersebar; biru: klasik; hijau: resonan

Eris dan satelitnya Dysnomia
Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects, atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari Matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai "objek sabuk Kuiper tersebar" (scattered Kuiper belt objects).[60]
Eris
Eris (rata-rata 68 SA) adalah objek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet, karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2.400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu satelit, Dysnomia.[61] Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38,2 SA (mirip jarak Pluto ke Matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.

Daerah terjauh

Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin surya dan gravitasi Matahari. Batasan terjauh pengaruh angin surya kira kira berjarak empat kali jarak Pluto dan Matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi Matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.

Heliopause


Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruang antarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari Matahari pada daerah lawan angin dan sekitar 200 SA dari Matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperti ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari Matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin surya berhenti dan ruang antar bintang bermula.
Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet Matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan Matahari seiring edarannya berkeliling di Bima Sakti.
Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin surya. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep "Vision Mission" yang akan khusus mengirimkan satelit penjajak ke heliosfer.

Awan Oort


Gambaran seorang artis tentang Awan Oort
Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilyun-trilyun objek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50.000 SA (sekitar 1 tahun cahaya) sampai sejauh 100.000 SA (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Objek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.[62][63]

Sedna


Foto teleskop Sedna
90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu objek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah objek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3.420 tahun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui proses yang mirip, meski jauh lebih dekat ke Matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatannya masih harus ditentukan dengan pasti.

Batasan-batasan

Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi Matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain, tidak lebih besar dari 50.000 SA.[64] Sekalipun Sedna telah ditemukan, daerah antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dikatakan belum dipetakan. Selain itu, juga ada studi yang sedang berjalan, yang mempelajari daerah antara Merkurius dan matahari.[65] Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.

Dimensi

Perbandingan beberapa ukuran penting planet-planet:
Karakteristik Merkurius Venus Bumi Mars Yupiter Saturnus Uranus Neptunus
Jarak orbit (juta km) (SA) 57,91 (0,39) 108,21 (0,72) 149,60 (1,00) 227,94 (1,52) 778,41 (5,20) 1.426,72 (9,54) 2.870,97 (19,19) 4.498,25 (30,07)
Waktu edaran (tahun) 0,24 (88 hari) 0,62 (224 hari) 1,00 1,88 11,86 29,45 84,02 164,79
Jangka rotasi 58,65 hari 243,02 hari 23 jam 56 menit 24 jam 37 menit 9 jam 55 menit 10 jam 47 menit 17 jam 14 menit 16 jam 7 menit
Eksentrisitas edaran 0,206 0,007 0,017 0,093 0,048 0,054 0,047 0,009
Sudut inklinasi orbit (°) 7,00 3,39 0,00 1,85 1,31 2,48 0,77 1,77
Sudut inklinasi ekuator terhadap orbit (°) 0,00 177,36 23,45 25,19 3,12 26,73 97,86 29,58
Diameter ekuator (km) 4.879 12.104 12.756 6.805 142.984 120.536 51.118 49.528
Massa (dibanding Bumi) 0,06 0,81 1,00 0,15 317,8 95,2 14,5 17,1
Kepadatan menengah (g/cm³) 5,43 5,24 5,52 3,93 1,33 0,69 1,27 1,64
Suhu permukaan
min.
menengah
maks.

-173 °C
+167 °C
+427 °C

+437 °C
+464 °C
+497 °C

-89 °C
+15 °C
+58 °C

-133 °C
-55 °C
+27 °C


-108 °C


-139 °C


-197 °C


-201 °C

Konteks galaksi


Lokasi Tata Surya di dalam galaksi Bima Sakti

Lukisan artis dari Gelembung Lokal
Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[66] Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion.[67] Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik.
Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.[68] Apex Matahari, arah jalur Matahari di ruang semesta, dekat letaknya dengan rasi bintang Herkules terarah pada posisi akhir bintang Vega.[69]
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.[70]
Tata Surya terletak jauh dari daerah padat bintang di pusat galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi.
Intensitas radiasi dari pusat galaksi juga memengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernova telah memengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah Matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet.[71]

Daerah lingkungan sekitar

Lingkungan galaksi terdekat dari Tata Surya adalah sesuatu yang dinamai Awan Antarbintang Lokal (Local Interstellar Cloud, atau Local Fluff), yaitu wilayah berawan tebal yang dikenal dengan nama Gelembung Lokal (Local Bubble), yang terletak di tengah-tengah wilayah yang jarang. Gelembung Lokal ini berbentuk rongga mirip jam pasir yang terdapat pada medium antarbintang, dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.[72]
Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari Matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan Matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya.
Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Barnard (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa dua kali massa Matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).[73]
Bintang tunggal terdekat yang mirip Matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat Matahari, tetapi kecemerlangannya (luminositas) hanya 60%.[74] Planet luar Tata Surya terdekat dari Matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan, bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.[75]

Lihat pula

Catatan

  1. ^ Kapitalisasi istilah ini beragam. Persatuan Astronomi Internasional, badan yang mengurusi masalah penamaan astronomis, menyebutkan bahwa seluruh objek astronomi dikapitalisasi namanya (Tata Surya). Namun, istilah ini juga sering ditemui dalam bentuk huruf kecil (tata surya)
  2. ^ Lihat Daftar satelit untuk semua satelit alami dari delapan planet dan lima planet kerdil.
  3. ^ Massa Tata Surya tidak termasuk Matahari, Yupiter, dan Saturnus, dapat dihitung dengan menambahkan semua massa objek terbesar yang dihitung dan menggunakan perhitungan kasar untuk massa awan Oort (sekitar 3 kali massa Bumi),,[76] sabuk Kuiper (sekitar 0,1 kali massa Bumi)[55] dan sabuk asteroid (sekitar 0,0005 kali massa Bumi)[39] dengan total massa ~37 kali massa Bumi, atau 8,1 persen massa di orbit di sekitar Matahari. Jika dikurangi dengan massa Uranus dan Neptunus (keduanya ~31 kali massa Bumi), sisanya ~6 kali massa Bumi merupakan 1,3 persen dari massa keseluruhan.
  4. ^ Astronom mengukur jarak di dalam Tata Surya dengan satuan astronomi (SA). Satu SA jaraknya sekitar jarak rata-rata Matahari dan Bumi, atau 149.598.000 km. Pluto berjarak sekitar 38 SA dari Matahari, Yupiter 5,2 SA. Satu tahun cahaya adalah 63.240 SA..  

Diberdayakan oleh Blogger.